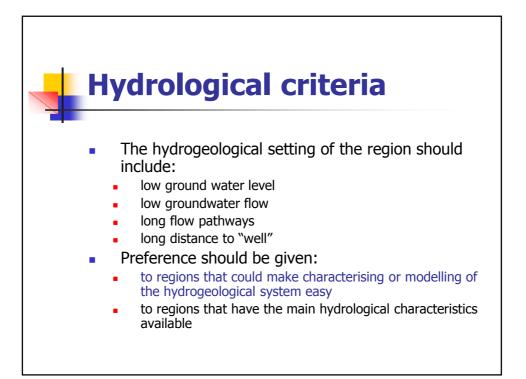
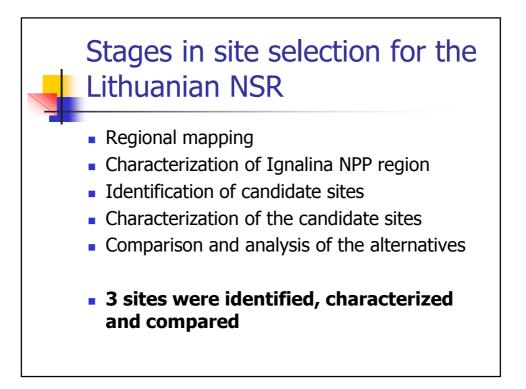


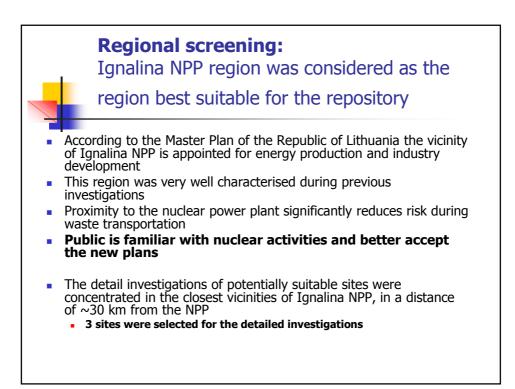





## Planning

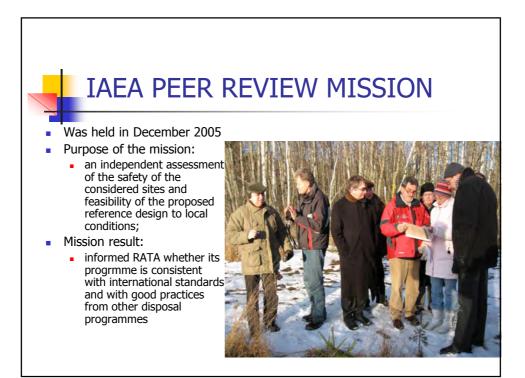

- Pursuant to the IAEA recommendations the sitting of a near surface repository may be divided into four stages:
  - conceptual and planning stage
  - area survey stage
  - site characterisation stage
  - site confirmation stage



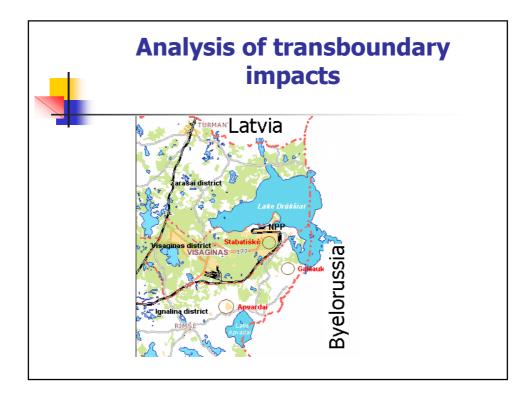


## Assessment of geotechnical, hydrological, tectonic risks

| Criterion          | Effect                     | Riskiness                    |  |  |  |
|--------------------|----------------------------|------------------------------|--|--|--|
| Slope stability    | Strong break of cells      | Highest risk                 |  |  |  |
| Settlement         | Break of cells             | Moderate risk                |  |  |  |
| Flooding           | Water intrusion into cells | Moderate risk                |  |  |  |
| Fectonic (seismic) | Slight break of cells      | Least severe<br>consequences |  |  |  |

| Main technical site exclusion<br>criteria and desirable site features |                                                                                                                                 |                                                                                                                                                                                   |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| for site<br>Topographical<br>features                                 | Possibility for flooding of foundation                                                                                          | Surface inclination is sufficient and water can drain away into a<br>surface water body. Preference should be given to a big hill.                                                |  |  |  |  |  |
|                                                                       | High erodability                                                                                                                | High resistance to erosion – relatively smooth site, shallow water<br>flow speed v is below the critical speed $v_{cr}$                                                           |  |  |  |  |  |
| Geotechnical stability                                                | Unstable slopes (safety factor $F_{\tan\phi}$ is less than 1.3)                                                                 | Slope stability of friction material; safety factor $\mathbf{F}_{\tan \varphi} > = 1.5.*$                                                                                         |  |  |  |  |  |
| Geotechnical stability                                                | High compressibility of bottom bed (high volume compression coefficient $\beta$ )                                               | Compressibility, compression strength, shear strength, internal friction angle and stiffness (E-modulus) of bottom bed shall comply with requirements for massive constructions*. |  |  |  |  |  |
|                                                                       | High liquefaction                                                                                                               | <ol> <li>Low pore water pressure.</li> <li>The maximum seismic intensity on the MSK scale &lt; =6.</li> </ol>                                                                     |  |  |  |  |  |
|                                                                       | Bad constructability                                                                                                            | Feasibility of excavation                                                                                                                                                         |  |  |  |  |  |
|                                                                       | Variety of ground features                                                                                                      | Homogeneous ground                                                                                                                                                                |  |  |  |  |  |
| Hydraulic<br>conductivity                                             | High hydraulic conductivity (filtration coefficient <b>k</b> is bigger than $10^{-5}$ m/s)                                      | Low hydraulic conductivity. It is desirable that filtration coefficient ${\bf k}$ is less than $10^{-7}$ m/s or even $10^{-9}$ m/s*.                                              |  |  |  |  |  |
| Impact from natural phenomena                                         | 1. Unfavourable climate<br>2. Unfavourable hydrological conditions                                                              | <ol> <li>Low and steady groundwater level. It is desirable that<br/>groundwater level is at least 3 m below bottom barrier*.</li> <li>No risk of being flooded.</li> </ol>        |  |  |  |  |  |
| Transport risks                                                       | Long distance to Ignalina NPP, transportation of<br>waste through big settlements and protected or<br>recreational territories. | <ol> <li>Vicinity to Ignalina NPP.</li> <li>Favourable infrastructure and logistics.</li> </ol>                                                                                   |  |  |  |  |  |



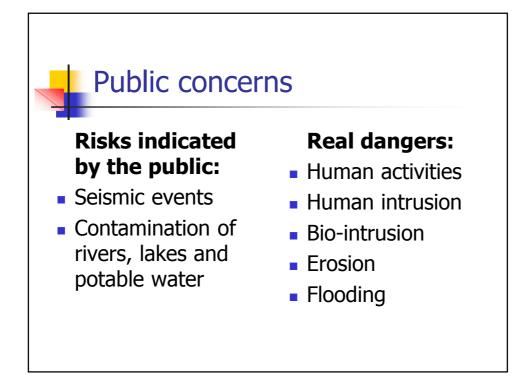


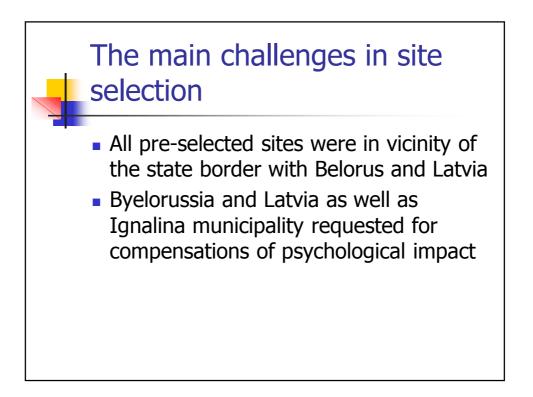



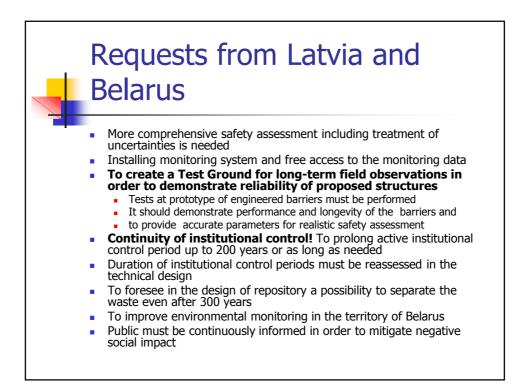


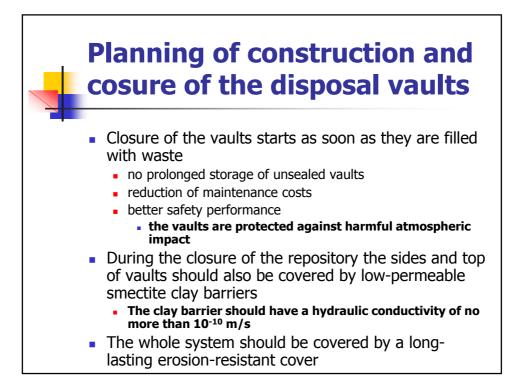






- Lithuania Latvia and Belarus are members of the Convention on Environmental Impact Assessment in a Transboundary Context (Espoo, 1991)
- The Ministry of Environment of Lithuania informed the counterparts in accordance with the Espoo Convention

|   | Public information during the EIA process |                                           |  |  |  |  |  |
|---|-------------------------------------------|-------------------------------------------|--|--|--|--|--|
| - | September<br>2006                         | Public hearing in Visaginas,<br>Lithuania |  |  |  |  |  |
|   | December<br>2006                          | Public hearing in Daugavpils,<br>Latvia   |  |  |  |  |  |
|   | December<br>2006                          | Public hearing in Braslav,<br>Belorus     |  |  |  |  |  |
|   |                                           |                                           |  |  |  |  |  |











- to prevent intrusion,
- to perform monitoring and surveillance
- to confirm the satisfactory performance of the repository by monitoring,
- to perform remedial actions, if necessary



|     | Initial project implementation schedule<br>Reasons for the delays |           |       |       |                     |      |      |      |      |        |            |
|-----|-------------------------------------------------------------------|-----------|-------|-------|---------------------|------|------|------|------|--------|------------|
| No. | Activities\Years                                                  | 2001      | 2002  | 2003  | 2004                | 2005 | 2006 | 2007 | 2008 | 2009   | 2010       |
| 1   | Conceptual and planning stage                                     |           |       | 1     | $ 1  \rightarrow 1$ | 1    | 1    | )    |      | line e | $r \sim q$ |
| 2   | Area survey stage                                                 |           | ji -  |       | 1.                  |      |      |      | -    |        |            |
| 3   | Site characterization stage                                       |           |       |       |                     |      | 1    |      | 2.11 |        |            |
| 4   | Government decision to design the NSR                             | 14 h F- 1 |       |       | *                   |      | -    | 1    |      | 1      | 1          |
| 5   | Site confirmation stage                                           |           |       | 1     |                     |      | 1    |      |      | 1      |            |
| 6   | Environmental impact assessment                                   |           |       | 131   |                     | _    | -    |      | 1.1  | 1. E.  | E.         |
| 7   | Basic design of the NSR                                           |           |       | 1-1   |                     | -    |      |      |      |        |            |
| 8   | Preliminary Safety Analysis Report                                |           |       | 1     | 1                   | -    |      |      |      |        | -          |
| 9   | Complex expertise of basic design                                 |           |       | 1     | 1.71                |      |      | -    |      |        |            |
| 10  | A permit for the construction                                     | 1111221   |       | 12.   | 0.21                | 1    |      | *    | 100  | 200    |            |
| 11  | Detailed design of the NSR                                        | n de set  | 1     | 171   | 121                 | h    |      | 1    |      |        |            |
| 12  | Construction                                                      |           | 1.000 |       | 221                 |      |      |      |      |        |            |
| 13  | Commissioning                                                     | 111       |       | 1     | 1-1                 |      |      |      |      |        | 0          |
| 14  | Final Safety Analysis Report                                      | 1411-1    | 11    | 1 - 1 | 111                 |      |      | 1    |      |        | -          |
| 15  | Start of operation                                                |           | 1     |       | 6.771               |      |      |      | 1    |        |            |

