WASTE TREATMENT & CONDITIONING

Stasys Motiejūnas, UAB EKSORTUS, Lithuania

Algirdas Vaidotas, Radioactive Waste Management Agency (RATA), Lithuania

16 November 2015, France

Steps in waste management The life cycle of radioactive waste generally consists of several steps: Pre-treatment: collection; segregation; decontamination, fragmentation Treatment: volume reduction, radionuclide removal from waste, change of physical and chemical composition Conditioning may include immobilization of the waste in cement, bitumen or glass matrix and enclosure of the waste in containers Disposal envisages emplacement of waste in an appropriate disposal facility without the intention of retrieval

□ Incineration of organic solvents and lubricants

Low force compaction

Low force (in-drum) compaction aims at reducing the volume of dry, compactable waste such as paper and plastic by compressing the waste in a 200 L drum so the compressed waste is ready for long term storage

Low force compaction is the least expensive and an easier volume reduction process than high force compaction.

Compaction units are also amenable to automation, which can improve operational efficiency and radiation protection aspects

The compaction module compresses the waste in the drum, adds more waste to the drum, compresses it again and repeats the process until the drum is full

Supercompaction

- □ The waste is placed into metallic drums and pressed with high power press
- □ The drums are pressed into cylindrical pellets
- □ Few pellets are placed into containers and filled with grout

Cementation (2)

Deprosity of waste matrix has to be minimized

- Optimal cement/ water ratio must be controlled
- Vibration by vibrating plate is applied to reduce porosity of the grout
- □ The cemented packages have to stay without disturbances for certain curing time
- □ Danger of overheating of the matrix
- □ The metallic waste has to be properly segregated and certain metals excluded (Al, Zn)
- Cementation of aches is complicated due to possible presence of Al particles

meltin	g / _{QUADE,}	U., MULL	LER, W., 20	005	
		Melt	Slag	Dust	
	Mn-54	60	39	1	
	Fe-55	99	1	0	
	Co-60	88	11	1	
	Ni-63	90	10	0	
	Sr-90	1	97	2	
	Ag-110m	1	32	67	
	Cs-137	1	60	39	

Smelting of metals

- Waste volume reduces due to reduction of voids and partial decontamination of the metal. Ingots are a primary product of smelting.
- Prevailing amount of Co, Cr, Fe, Ni, Zn, Mn radionuclides stay in the metal ingots while Sr and Cs concentrate in slag and dust
- □ The secondary waste (slag and dust) composes 1-4% of the smelted waste only
- □ The secondary waste (filters and slag) has to be further treated and immobilized as a radioactive waste

Containers for Very Low Level shot lived radioactive waste disposal to be used in Lithuania

Cost of conditioning Examples for different cost of Melting in Countries Duratek USA Duratex operate a 20 ton including furnace (7200 kW) at it's centralized facility in Oak Ridge, Tennessee. The metal is melted and cast into shield Blocks that are reused by the Department of Energy (DoE) as biologic protection in R&D accelerators and decommissioning works. Therefore, the metal sent to Duratex in the nuclear industry and remain in USA. Criteria: All material must meet Duratex WAC Dose rate : Max 200 microSv/h for steel, 50 microSv/h for lead. The metal and secondary waste remain in USA Prices for 2006: from 7 to 22 \$ per kg

Thank you!

IAEA Safety Standards			
for protecting people and the environment			
Classification of			
Radioactive Waste			
General Safety Guide			
NO. 656-1			IAEA Nuclear Energy Series No. NW-T-1.18
	-	IAEA-TECDOC-1129	
MEA-TECDOC-1537	EA-TECDOC-13H		Bask Determination and Use of Scaling
Phylocopy (Inspection and verification of waste packages for	Factors for Waste Characterization in Nuclear Power Plants
	Long term behaviour of low	near surface disposal	Caldo
Strategy and Methodology for Radioactive Waste Characterization	and intermediate level waste packages under repository conditions		Technical Reports
	Results of a co-ordinated resetron project 1997-2002		
		(4)	

Other reports	
Each unive Name Management Management (M.3. Management (M.3. Management (M.3. Management (M.3.)	0.4450-010-07 PMLE
21	
Radiological Characterisation for Decommissioning of Nuclear Installations	er al conductore
Final Report of the task Group on Balislogical Characterization and Decommissioning (RCI) of the part of the system and Ginavating (PCR0)	Material Management and Characterisation Techniques
-	Final Report Normality 2008
	AF-Cohenes List, Telemineum M. (CH 5647) Basina, Neurandrad Nicitar Rossanh lintativa Roz pic, Roz-Nismane (p. 10), 2008 Roz, Casch Royabit: ForoImagnaturus Karlanda Goaldt, ForoInds A043, 70011 Katurhada, Goamany Wilahad, contrad Labako Weiserus H. Sanzow, Wangari 7, 1004 Madind, Span Nacina Rossanda and construct Katakowa Weiserus (J. 1052 E Artena, Tako Mandardha) Discontrad Rossandar Goaldt, Service J. 1052 E Artena, Tako Mandardha Discontrad Rossandar Goama, Sanzowa Yang, Alas Markawa, Lintata Kataphan Menta Labakowa Dana Pata, Katayin Yu, Martin Warangana, Lintat Kataphan Menta Labam Katabane Cana Dana Pata, Katayin Yu, Martin Warangana, Lintata Kataphan

Radiological Characterisation for Decommissioning of Nuclear Installations

Radiologica	characterisation
	of radiological characterisation in the various phases of the a nuclear installation
Characteris	ation as an important input for estimation of costs and liabilities
Implementa	tion of radiological characterisation
Techniques	used in radiological characterisation
D C	
	f clear objectives for radiological characterisation
. Radiologica Installation Coupling ar	l Characterisation During the Various Phases of a Nuclear
. Radiologica Installation Coupling ar Radiologica	l Characterisation During the Various Phases of a Nuclear d synergies between radiological characterisation in different phases l characterisation before and during operation
. Radiologica Installation Coupling ar Radiologica Radiologica	l Characterisation During the Various Phases of a Nuclear d synergies between radiological characterisation in different phases l characterisation before and during operation l characterisation during the transition phase
Radiologica Installation Coupling ar Radiologica Radiologica Radiologica	l Characterisation During the Various Phases of a Nuclear d synergies between radiological characterisation in different phases l characterisation before and during operation

Waste characterization strategy & stages

- □ Pre- characterization
- □ Application of *scaling factors* for *difficult to measure* radionuclides
- Characterization of conditioned waste packages
- □ Verification of compliance

- 1. Definition of radionuclide list
- 2. Definition of waste streams
- 3. Sampling and measurements of radionuclide activity concentrations
- 4. Theoretical analysis of radionuclide generation processes in various components (waste streams)
- Definitions of the correlations between "difficult to measure" and <u>reference</u> radionuclides (i.e. Co-60 or Cs-137)
- 6. Validation of the scaling factors by measurements

Target nuclide	Abundance %	(n, γ) cross section	Activation product	Half life	Decay
⁵⁸ Ni	68.2	4.64	⁵⁹ Ni	7.6x104 y	EC (Kx=6.9 keV)
⁶⁰ Ni	26.1	2.82	⁶¹ Ni	Stable	
⁶¹ Ni	1.13	2.51	⁶² Ni	Stable	
⁶² Ni	3.59	14.25	⁶³ Ni	100 y	β-, 66.9 keV
⁵⁴ Fe	5.85	2.3	⁵⁵ Fe	2.73 y	EC
⁵⁶ Fe	91.75	2.6	⁵⁷ Fe	stable	
⁵⁸ Fe	0.28	1.31	⁵⁹ Fe	44.5 d	β-, γ

Nickel-63

- □ Half-life: 100.1 years
- Emissions: beta particles with a maximum energy of 66 keV and an average energy of 17 keV
- □ Maximum Range: 5 cm in air; < 0.01 cm in tissue
- Dose rate to the skin at 10 cm: negligible
- Detection: a wipe survey using liquid scintillation counting is the preferred method for detecting Ni-63
 - G-M detectors will not detect Ni-63 contamination
 - Radiation monitoring badges are not required for Ni-63 users, since the monitoring badges will not detect Ni-63

Measurements

- □ Gama spectroscopy
 - Nondestructive method
- Chemical separation of radionuclides followed by:
 - Beta counting
 - Alpha spectroscopy
 - Mass spectroscopy

Measurement of Ni activities: decomposition of samples

Metals (steel, Ni-Cr-X alloys, copper, lead, Al alloys)

- Acid digestion
- □ Concrete, soil, sediments
 - Alkali fusion followed by water leaching
 - Acid digestion
- □ Plants, organics
 - Ashing followed by acid digestion

- □ Ni-59 emits 6.9 keV X-rays
- It can be measured by gamma spectrometers with Ultra Low Energy Germanium detectors
- Activity of Ni-63 correlates with activity of Ni-59
 - Ni-59/Ni-63 = 1/133

Gamma measurements tools

Functions of waste matrix and containers

- During the post-closure phase, the waste package provides both physical and chemical containment of waste contaminants
- The waste package serves as the first barrier in the series of barriers that contribute to radionuclide isolation from the biosphere.
- □ In the context of repository performance, waste packages generally serve the following functions:
 - Limit the rate of radionuclide and contaminant release
 - Provide mechanical support for other repository components

Example of waste package verification at the repository /TECDOC -1129/

Administrative checks	Visual checks	Direct measurements
Completeness of consignment record	External package condition	Weighing
Package identification	Tamper seals	Radiation dose survey
Weight	Package closure	Radiological contamination survey
Activity limits		
Dose rate	Package labelling/ identification	Tightness (torque) testing
Surface contamination		Radiography/tomography
Shipment number		Activity measurement
Special conditions		Container integrity survey
Container type		Destructive testing
Fissile mass		

Visual examination

- Personnel conducting visual examination have to be suitably trained and qualified
- Inspections need to be conducted by use of a formal procedure and the results recorded on inspection forms
- Completed inspection forms have to be filed and available for examination

Direct measurements

Techniques for direct measurement and verification of compliance with waste acceptance criteria provide an increased level of confidence in waste package documentation supplied by the waste generator. These techniques can range from relatively simple and inexpensive methods (e.g. contamination surveys) to more complex methods (e.g. destructive sampling) that are more expensive due to the need for sophisticated equipment, facilities and highly trained and qualified personnel.

Conclusion

- Destructive methods are very expensive and they should be excluded or minimized
- It is much simpler to characterize raw (untreated) waste instead of conditioned waste
- □ So, it is recommended appropriately characterize waste at early stages
- Application of the scaling factors method is advised

