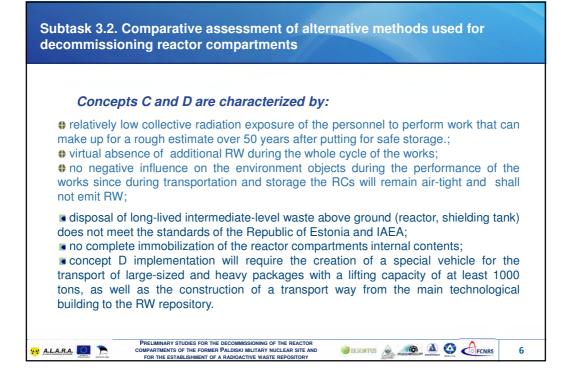


Subtask 3.2. Comparative assessment of alternative methods used for decommissioning reactor compartments

Alternative methods of concepts C and D (disposal as a whole) currently used for deferred decision in the international practices of the long-term storage.


Negative aspects: safety, limited selection for disposal options, non-compliance to international recommendations of the IAEA in relation to the radioactive waste disposal and may will be in conflict with the IAEA requirements which are assumed to be used in the future, especially if to take into account that the decommissioning is expected after 50 years of safe storage.

> Preliminary indicative assessment of decommissioning methods

Concept	man-hours	years	Collective dose (man – mSv)	Cost, (million Eur)
Concept C	117 000	3.5	110	7.8
Concept D	214 000	5.5	190	12.0
Concept A	328 000	6.6	600 - 700	24.0
Concept B	369 000	7.0	700 - 800	25.0

Concept A (large-size fragmentation) - minimization of the dose loads if compare to Concept B (small-size fragmentation). Concepts A and B require demolition equipment, concrete crushing, special container for the reactor vessels transportation/disposal as a whole. Concept A and B require specialized installations and equipment for mapping of RW inside reactor compartment. Comparing to the concept A, concept B requires more precise cutting of the concrete and decontamination; and, in its turn, it provides for better radwaste management (usage of standard containers), safety, allows to minimize quantities of the radwaste for disposal.

5

E AND

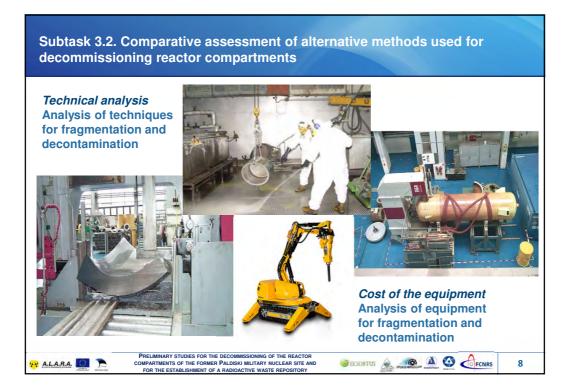
Subtask 3.2. Comparative assessment of alternative methods used for decommissioning reactor compartments

Option A is characterized by:

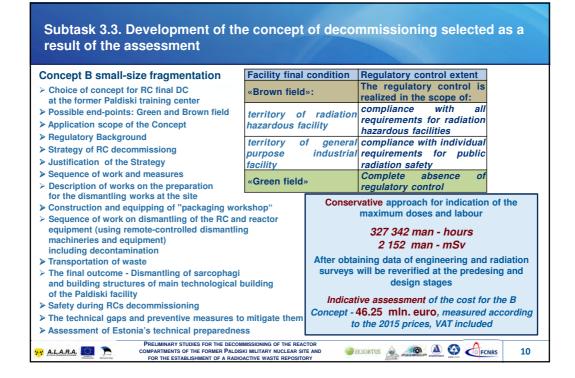
- moderate labour costs and collective radiation exposure;
- fewer amount of equipment required for decommissioning works compared to option B;
- fewer amount of secondary RW compared to option B;

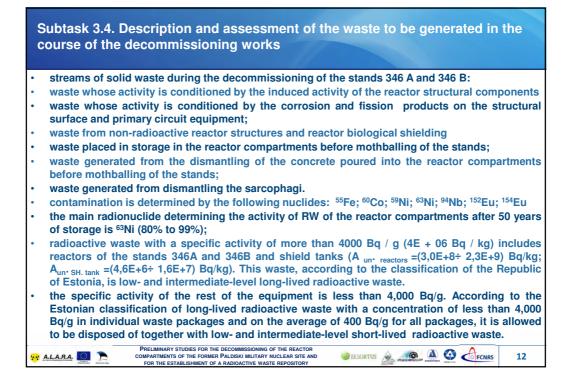
Option B is inferior to option A by the following indicators:

- Iabour costs
- collective radiation exposure;
- amount of equipment and systems for waste decontamination,
- costs of waste processing and purification of the gas environment;
- amount of the secondary waste to be generated.


However, implementation of option B is characterized by:

- reduction of primary RW; (RC and the nuclear installation equipment is to be cut into small fragments, which are subject to decontamination with the aim of exempting most of the metal waste from regulatory control, and, thus, it is possible to minimize the RW amount to be disposed of);
- reduction of volume and number of RW packages to be disposed of;
- reduction of the number of standard size protection containers to be developed.
- reduction in the size of RW repository facilities, which will result in cost saving during RW repository construction


7


PRELIMINARY STUDIES FOR THE DECOMMISSIONING OF THE REACTOR COMPARTMENTS OF THE FORMER PALDISKI MILITARY NUCLEAR SITE AND FOR THE ESTABLISHMENT OF A RADIOACTIVE WASTE REPOSITORY

indicative expert estimation						
Evaluation criteria	Option	Evaluation	Points			
Time of work	Α	100	score			
	В	95	score			
Man-hours for the whole set of works	Α	100	score			
	в	90	score			
Dose loads for the whole set of works (man – mSv)	Α	100	score			
	В	85	score			
Amount of primary RW to be generated (cubic m.)	Α	60	score			
	В	100	score			
Amount of the secondary RW to be generated (% from Σ RW)	Α	100	score			
	В	70	score			
Quantity of standard sizes of the containers to be newly developed	Α	75	score			
(transport and disposal containers, pcs.)	В	100	score			
Economics (cost estimation, mln. Euro)	Α	100	score			
	В	90	score			
Safety assessment (general safety)	Α	75	score			
	В	95	score			
Environmental impact assessment	Α	85	score			
	B	80	score			

Subtask 3.3. Development of the concept of decommissioning selected as a result of the assessment INDICATIVE WORK SCHEDULE AND SEQUENCE OF WORKS	
1. Preparatory works	
1.1 Preliminary studies on decommissioning in 2014- 2015	
1.2 Introduction of changes into legal and regulatory framework of the Republic of Estonia (RE)	
1.3 Comprehensive engineering and radiological survey of the Site and reactor compartments (RCs)	
1.4 Feasibility study and environmental impact assessment of the former Naval Training Center (Paldiski) decommissioning	
1.5 Coordination and approval of the concept of final decommissioning of the former Naval Training Center (Paldiski)	
1.6 Taking decision on the final decommissioning of the former Naval Training Center (Paldiski), including a decision on fundim	g.
1.7 Development of program including plan of its implementation. Development of design documentation. Licensing.	
2. Works on the site of the former Naval Training Center (Paldiski)	
2.1 Infrastructure refurbishment (equipment for waste management, handling, environmental protection and safety)	
2.2 Preparation for waste management (preliminary): relocation, handling, packing and placement of waste (solid)	
2.3 Dismantling of building structures of the RCs and its premises, waste handling and disposal of low-level waste,	
2.4 Dismantling of the equipment of the primary circuit and pressurized water reactor, waste handling and disposal	
2.5 Intermediate processing and exemption of waste that remains after previous (earlier) activities, (and) dismantled infrastruction	cture
2.6 RC building decontamination	
2.7 Decontamination and complete cleaning of the site	
2.8 Complete disassembly of the building and facilities on the site	
2.9 Area remediation	
Final stage	
3.1 Procedure of exemption of the former Naval Training Center (Paldiski) from regulation for the radiation hazardous facilities	1
3.2 Site transfer to national economy (restricted use)	
3.3 End-pont "Brown Field"	
PRELIMINARY STUDIES FOR THE DECOMMISSIONING OF THE REACTOR COMPARTMENTS OF THE FORMER PALDISKI MILITARY NUCLEAR SITE AND FOR THE ESTABLISHMENT OF A RADIOACTIVE WASTE REPOSITORY	.1

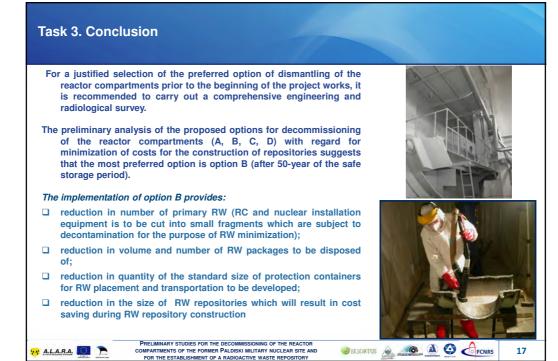
346B decommissioning various options					
	Stand	346 A	Stand 346 B		
Waste denomination	Mass, kg	Volume, m ³	Mass, kg	Volume m ³	
Concept A Dismantling of RC with large-sized fragm	entation				
Long-lived ILW, LLW from dismantling of RC primary circuit equipment	115,000	220	210,000	384	
Waste from RC dismantling (removed from under control and non-radioactive)	740,000	370	740,000	370	
Radioactive waste from the concrete cutting with RW inside the compartments (categories of ILW compartments with IRS, LLW, VLLW - for the rest of the concrete compartments)	656000	73	906000	55	
Waste from sarcophagus dismantling (non-radioactive)	650,000	650	610,000	610	
Total RW	180,000	~293	300,000	439	
Total of non-radioactive waste	1,390,000	1020	1,350,000	980	
Concept B Dismantling of RC with small-size fragm	entation				
Long-lived ILW, LLW from dismantling of RC primary circuit equipment	115,000	197	210,000	288	
Waste from RC dismantling (removed from under control and non-radioactive)	740,000	370	740,000	370	
Radioactive waste separated from the concrete inside the compartments (category of ILW compartments with IRS, LLW, VLLW - for the rest of the concrete compartments)	15,000	17	10,000	17	
Concrete (non-radioactive)	50,000	50	80,000	80	
Waste from sarcophagus dismantling (non-radioactive)	650,000	650	610,000	610	
Total RW	130,000	214	220,000	305	
Total of non-radioactive waste	1,440,000	1070	1,430,000	1060	
Concepts C and D RC disposal as a whole					
Radioactive waste of category ILW, LLW in RC volume	920,000	~700	1,040,000	900	
Waste from sarcophagus dismantling (non-radioactive)	650,000	650	610,000	610	
Total RW	920,000	700	1,040,000	900	
Total of non-radioactive waste	650,000	650	610,000	610	

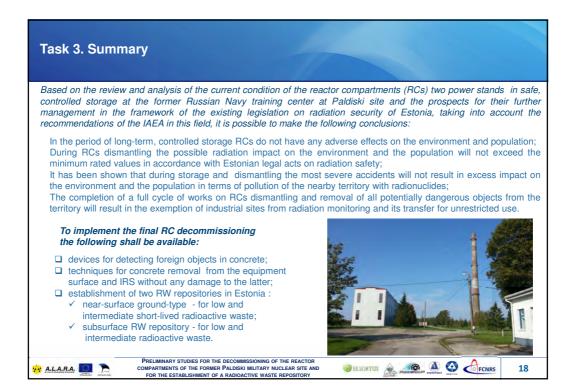
Substage 3.4. Preliminary indication of waste volumes of stands 346A and 346B decommissioning various options

For transporting and disposal of the RPVs of stands 346A and 346B it is recommend one type of container (2,8x4,8), although the size and weight of the RPV of 346B is much more than 346A (50 t and 30 t). According to the IAEA regulations for the transportation the Type A package is required for this RW. Developing an appropriate container, designed for all required types of impacts is very expensive task, and is estimated at about 500 000 euro and the cost of manufacture of such a container could be about 80 000 euros. Therefore, it is desirable to develop as little as possible of new containers and if possible to use existing ones. In order to save funds it seems to be useful to develop one type of container for every suitable case. Concept B requires container of type A package for the disposal of both RPV and for fragments of two shielding tanks.

Development of the container: development of the construction, conducting computational studies for conformity with the required parameters, prototyping, conduct confirmation testing for compliance with the requirements, manufacture of sample, cask certification.

A.L.A.R.A. 🛄 🚬


PRELIMINARY STUDIES FOR THE DECOMMISSIONING OF THE REACTOR COMPARTMENTS OF THE FORMER PALDISKI MILITARY NUCLEAR SITE AND FOR THE ESTABLISHMENT OF A RADIOACTIVE WASTE REPOSITORY



Initial event	Initial events consequences
External effects of natu	iral and man-made disasters
Earthquake (4.7 by the Richter scale)	Structures designed for earthquake of 7 points on MSK-64 scale (approximately 4,8 on the Richter scale)
Hurricanes, tornadoes	May result in the partial destruction of the roof and falling of the fragments of the bridging.
Rains (abnormal)	Does not result in flooding of the building (location on flat terrain at ~ 25 m above sea level)
Typhoons and tsunamis	MTB building is located outside the impact area of the hydrological phenomena.
Snow load 1.8 kN/m	The bridging is designed for such loads
Fhunder / lightning	All electrical equipment is grounded and earthed, lightning protection is provided for
Air shock wave as a result of explosion	The pressure of the air shock wave in case of explosion of a tank is approximately 2.5 kPa and it does not lead to the destruction of MTB structures.
Fall of an aircraft / flying object	No considerable damage from light aircraft (up to 5 t). Heavy aircraft (20 t or more) will destroy the sarcophagus structure, can cause depressurization of RC shell, but not break unit primary circuit, a possibility of fire break-out will not lead to dispersion of radioactivity in the atmosphere.
Internal impacts cause	ed by accidents inside the building
Fire inside MTB building	Heating of contaminated equipment during a fire not lead to dispersion of radioactivity in the atmosphere.
Fall of the overhead crane	Deformation of the of the pressure shell, possibility of mechanical equipment damage of the primary circui (crumple, breaks of the shell, etc.). The release of radionuclides is insignificant.
Fall of the reactor vessel (RV)	Release of radionuclides is insignificant, the radiation background slightly increased, and the event does not prevent further work (after 50 years of storage - dosage rate from reactor vessel be within 0.2 mSv/h.
Fall of the SRW container (destruction of the container)	When falling from various heights, there are various consequences. The container can become depressurized, but reactor vessel will remain inside the container. No release of the radioactivity from reactor vessel. Radiation environment around the container will remain within the emergency standards.

Subtask 3.5. Decommissioning safety assessment, taking into account the waste quantities to be generated

Analysis of the Risks in Emergency Situations and Assessment of Their Consequences	Description of	Radio	Effe	ctive D	ive Dose of Internal Radiation, Sv, at a distance, km				
	Emergency nuclide Situation	1	1.3	1.8	3	4.5	6	8	
Assessment of dose exposure in a		Co-60	1.88 E-12	2.37 E-12	2.19 E-12	1.78 E-12	1.32 E-12	1.08 E-12	7.57 E-13
situation when a source (most active) is opened and becomes completely unenclosed 1) non-destroyed $P_A = \frac{Q \cdot K_Y}{R^2}$	Burning of Containers With Solid Radioactive Waste	Eu-152		2.48 E-12	2.29 E-12	1.86 E-12	1.37 E-12	1.13 E-12	7.91 E-13
		Eu-154		9.34 E-13	8.64 E-13	7.05 E-13	5.19 E-13	4.27 E-13	2.99 E-13
		Cs-137		5.51 E-12	5.12 E-12	4.18 E-12	3.08 E-12	2.52 E-12	1.77 E-12
		Total		1.13 E-11	1.05 E-11	0.5 E-11	6.29 E-12	5.17 E-12	3.61 E-12
2) scattered as along the line at a distance of approximately 50 cm gamma source							Activity according to certificate		
$P_{A} = \frac{2n \cdot K_{\gamma}}{h} \cdot \operatorname{arctg} \frac{l}{h}$ Cobalt- GIK-5-2							3.16x10 ¹² Bq		
In case of an emergency situation the personnel must leave the emergency situation area and mayor to a cafe place (5 min) GIK-2-18						5.11x10 ¹¹ Bq			
the emergency situation area and move to a safe place (5 min). One-time individual exposure will not exceed 0.1 mSv				cob	egory alt-60 g		1.02x10 ¹⁰ Bq		
Source GIK-2-14 PRELIMINARY STUDIES FOR THE DECOMMISSIONING OF THE REACTOR COMPARTMENTS OF THE FORMER PALDISKI MILITARY NUCLEAR SITE AND FOR THE ESTABLISHMENT OF A RADIOACTIVE WASTE REPOSITORY									

